Shane Marshall | Construction Management

Pegula Ice Arena

Advisor: Raymond Sowers

Building Information

Location:	Pennsylvania State University University Park	Schedule:
Function:	Division 1 Hockey Community Rink	
Size:	227,000 SF	Delivery Method:
	Height = 65 ft. above grade	Cost:
LEED:	Gold Potential	
		Contract:
		Structure:
		Mechanical:

Introduction

<u>Project</u> Introduction Analysis 1 Community Rink

Construction Information

First Puck Drop – PSU vs. Army | October 11, 2013 Start | February, 2012 End | September, 2013

CM at Risk

Project | \$102 M Construction | \$89 M

Guaranteed Maximum Price

Moment & Braced Frame Precast Stadia

12 Air Handling Units

Project Team Members

Analysis 1Analysis 2Analysis 3Analysis 3Analysis 4kStructural BreadthBuilding SequenceBuilding EnclosureArchitectural BreadthGeotech Investigation

Analysis 1

Project Introduction

Analysis 1 Analysis 2 Analysis 1 **Building Sequence Community Rink** Structural Breadth

Community Rink Sequence off Critical Path

Analysis 3 Building Enclosure

Analysis 3 Analysis 4 Architectural Breadth Geotech Investigation

Community Rink Critical Path Items

PEGULA ICE ARENA at 2 ------ In- section of

Community Rink line items & SOG, and structural steel) lie on the critical path

Finishes have the potential to be expedited

Analysis 2 Analysis 3 Analysis 1 Analysis 3 Analysis 4 Building Sequence Building Enclosure Geotech Investigation Structural Breadth Architectural Breadth

Key Points from Schedule 1

(foundation wall, underground MEP

New Schedule

- Backward logic applied to removed community rink schedule line items.
- Exterior CMU along west portion of \bullet building now controls community rink.
 - Structural steel (NW) finish-start relationship with exterior CMU.
- 17 days of float are available for the community rink.

Results

Crane Driven	A
Start Date	
Finish Date	
Actual Days	
Working Days	

Project

Introduction

* There are not actually 17 days of crane reduction.

ctivities		
Original Schedule	New Schedule	
7/16/2012	7/16/2012	
10/26/2012	10/3/2012	Total Days Saved
103	80	23
75	58	17

Finish Work D			
	Original Schedule	New Schedule	
Start Date	5/18/2012	5/18/2012	
Finish Date	11/6/2012	10/15/2012	Total Days Gained
Actual Days	174	151	22
Working Days	123	107	16

<u>Analysis 1</u>	Analysis 1	Analysis 2	Analysis 3	Analy
<u>Community Rink</u>	Structural Breadth	Building Sequence	Building Enclosure	Architectu

ysis 3 Analysis 4 Geotech Investigation ral Breadth

Mechanical Units

Structural Breadth

Project Introduction

Analysis 1 Community Rink

Proposed Structural Design

Mechanical units rest over main rink and community rink

Analysis 4 Geotech Investigation

Load Calculations

Community Roof

- DL = 3.6psf TPO + 5psf beam self-weight = 8.6psf
- LL = 20psf (roof load)
- SL = 30psf
- $W_u = 1.2(8.6) + 1.6(20) + 0.5(30) = 57.3 \text{ psf}$
- Point Load = 57.3psf * 47.5' * 26'(worst case scenario) = 70.766kip

Cantilevered Section Top Girder (Gridlines X3 to X4)

- DL = 75psf (concrete slab) + 24psf (AHU weight) + 10psf girder self-weight = 109psf
- LL = 20psf (roof load)
- SL = 30psf
- $W_u = 1.2(109) + 1.6(20) + 0.5(30) = 180psf$
- Distributed Load = 180psf * 26' = 4.68kip/ft

Top Girder (Gridlines X4 to X5)

- DL = 75psf (concrete slab) + 24psf (AHU weight) + 10psf girder self-weight = 109psf
- LL = 20psf (roof load)
- SL = 30psf
- $W_u = 1.2(109) + 1.6(20) + 0.5(30) = 180psf$
- Distributed Load = 180psf * 26' = 4.68kip/ft

Bottom Girder (Gridlines X4 to X5)

- DL = 75psf (concrete slab) + 10psf girder self-weight = 85psf
- LL = 100psf (corridor)
- $W_u = 1.2(85) + 1.6(100) = 262psf$
- Distributed Load = 262psf * 27.4' (worst case scenario) = 7.183kip/ft

Structural Results

Project Introduction

Analysis 1 Community Rink

X3

70.766kip

Rectangular

Structural Loads

Structural Member Results

Analysis 2 Analysis 1 Analysis 3 Analysis 3 Structural Breadth Building Sequence Building Enclosure Architectural Breadth

Analysis 4 Geotech Investigation

Structural Figure

- schedule.
- finished.

Analysis 1 Conclusion

Project Introduction

Analysis 2 Analysis 1 Analysis 3 Analysis 1 Analysis 3 Analysis 4 Building Sequence Building Enclosure **Community Rink** Structural Breadth Architectural Breadth Geotech Investigation

Advantages

• Finishes can begin more quickly ahead of the current schedule which will result in the project finishing three weeks ahead of

• Allows more float on community rink activities. Specifically mechanical room has much more time to get underground work

• Decrease in general conditions • Employee Costs: \$91,500 • Miscellaneous Costs: \$8,175 • Total Costs: \$99,675

Disadvantages

- Significant increase in size of steel columns and girders.
- Additional cost in steel. (\$361,748)
- Potential foundation upgrades.
- Minimal crane time saving.
- Significant aesthetic disruption at student entrance.

Project Introduction

Analysis 1 Analysis 1 <u>Analysis 2</u> Analysis 3 Analysis 3 Community Rink Structural Breadth **Building Sequence Building Enclosure**

Building Sequence

Analysis 4 Architectural Breadth Geotech Investigation

Schedule

	Base Summary Schedule	Two Crews Summary Schedule
Start	January 26, 2012	January 26, 2012
Finish	September 17, 2013	March 8, 2013

_	Base Summary Schedule	Excavation, Concrete, Steel Two Crews
Start	January 26, 2012	January 26, 2012
Finish	September 17, 2013	August 23, 2013

Two Crews

Project Introduction

Analysis 1 **Community Rink**

Logistics

Excavation:

Twice the amount of heavy machinery

Traffic flow on the site and at the site entrance

Tight working conditions

Lack of maneuverability to

Foundation and Concrete:

working spaces

Steel:

Tight working conditions

Lack of maneuverability for steel deliveries

Little to no shakeout area

Second crane has potential to boom out over public buildings and pathways

Cranes have potential to collide

Analysis 1 Structural Breadth

Analysis 2 **Building Sequence**

Analysis 3 **Building Enclosure** Analysis 3

Logistics

Analysis 4 Geotech Investigation Architectural Breadth

Original Sequence

Analysis 1 **Community Rink**

Proposed Sequence

	Different Project Start Point				
	Duration	Start	Finish		
oceed	0 days	Thu 1/26/12	Thu 1/26/12		
	6 days	Fri 1/27/12	Fri 2/3/12		
Bottom of SOG	51 days	Mon 2/13/12	Mon 4/23/12		
Foundations	41 days	Tue 3/27/12	Tue 5/22/12		
Concrete	43 days	Tue 3/27/12	Thu 5/24/12		
d MEP / SOG Concrete	60 days	Fri 3/16/12	Fri 6/29/12		

Analysis 1 Analysis 2 Analysis 3 Analysis 3 Structural Breadth **Building Sequence** Building Enclosure Architectural Breadth

Analysis 4 Geotech Investigation

Logistical Challenges

Project Introduction

Analysis 1 Community Rink

Work at Sequence 3

Advantages vs. Disadvantages

Advantages

- Rough-In and Finishes can begin more quickly (2 weeks of schedule reduction)
- Roof enclosure has less chance to be "snowed out" • Potential alternative crane logistics • Potential for no SOG comeback pours

Disadvantage

- Most difficult sequence of steel / precast would be installed blind
- Potential for increased crane time and additional cost

Crane Sequence

Analysis 4 Architectural Breadth Geotech Investigation

Analysis 3

Project Introduction

Analysis 2 Analysis 1 Analysis 1 Analysis 3 Analysis 3 Community Rink Structural Breadth Building Sequence **Building Enclosure**

Building Enclosure

Analysis 4 Architectural Breadth Geotech Investigation

Current Enclosure

NO air/vapor barrier?

Enclosure System

Project Introduction

Analysis 1 Community Rink

Proposed Wall System

Vapor Barrier Issue

Plot the temperature lines & examine for locations where actual temperature falls below dewpoint temperature...

That indicates a location for potential condensation

Analysis 1 Structural Breadth

Analysis 2 Building Sequence

Analysis 3 Building Enclosure

Analysis 3 Analysis 4 Geotech Investigation Architectural Breadth

Wall Temperature

Dew Point Temperature

Façade Design

Project Introduction

Analysis 1Analysis 2Analysis 3Analysis 3Community RinkStructural BreadthBuilding SequenceBuilding EnclosureArchitectural Br

Analysis 3Analysis 4Architectural BreadthGeotech Investigation

Enclosure Section

No Insulation Along Parapet. Just Concrete for 42".

Drawing Details

Analysis 1 **Community Rink**

Construction Drawings

C-Grid Shear Truss Vent Top of Joint and 2" off Shear Bar both Sides Place Weep Hole at Bottom of Joint at Exterior Insulated Shear Bar Sealant Panel Cap 1" Shim Stack Backer Rod Brick Concrete **TPO Roofing** Extruded Flashing/Sealant -Concrete Slab Polystyrend Backer Rod Compound Insulation Embeddment Concrete Sealant Vent Top of Joint and Place Weep Hole at 4 Neoprene Pads Bottom of Joint at Exterior Total At Base of Sealant Window Frame Backer Rod Air Space C-Grid Shear Truss Steal Mesh Air Space . Neoprene Pad . . . Neoprene Pad Concrete Weld Window Sealant and Slab Sealant and Frame to Insulated Backer Rod À . 4. . Panel Cap at top of Backer Rod Steal Beam Frame to ensure Shim Stack Insulated Panel Cap Shear Bar Lateral Stability

Analysis 1 Structural Breadth

Analysis 2 Building Sequence

Analysis 3 Building Enclosure

Analysis 3 Analysis 4 Architectural Breadth Geotech Investigation

Structural Drawings

Weight

Original System

- Panels (Studs, sheathing, Vapor Barrier) = 8 psf
- Insulation = 5 psf
- Brick = 42 psf
- Total =55 psf

New System

- 6" Concrete and Thin Brick = 75 psf
- Insulation = 5 psf
- Total = 80 psf

Original System

- 54 Working Days
- Start Date: December 2012
- Finish Date: February 2013

New System

- Per RS Means, based on average square foot, 3 panels can be erected per day. There are 57 panels total 57/3 = 19 Working Days Start Date: August 2012
- •
- Finish Date: September 2012

New vs. Original System

Project Introduction

Analysis 1 Community Rink

Schedule

Original System

- Panels (Studs, Sheathing, Vapor Barrier, Insulation) = \$495,000
- Scaffold Temporary Heating = \$30,000
- Brick = \$9.00 sf x 12,973 sf = \$116,757
- Total = \$641,757 | \$49.47 sf

New System

- 6" Precast Concrete = \$44.84 sf x 12,973 sf = \$581,709
- Insulation Panel (3") = \$1.60 sf x 12,973 sf = \$20,757
- Thin Brick façade, modular, red= \$8.75 sf x 12,973 = \$113,514
- Cost increase of crane = \$50,000
- Adjustment Factor (admixtures, large panels/shipping, additional structural support to accommodate additional weight) = 1.1
- Total = \$842,578 | \$64.95 sf

Cost

Analysis 3 Analysis 4 Architectural Breadth Geotech Investigation

Analysis 3 Conclusion

Introduction

Analysis 1 Analysis 2 Analysis 3 Analysis 3 Community Rink Building Sequence **Building Enclosure** Structural Breadth

Masonry activities are expedited; however, overall schedule duration does not change since finishes cannot begin any earlier.

Cost Increase of over \$200, 000

Analysis 4 Geotech Investigation Architectural Breadth

Project Introduction

Analysis 1 Analysis 1 Analysis 2 Analysis 3 Community Rink Structural Breadth Building Sequence **Building Enclosure**

Geotechnical Investigation

Analysis 3 Analysis 4 Architectural Breadth <u>Geotech Investigation</u>

Pegula Geotechnical Investigation

Boring

Geotechnical Estimate (Boring)								
System	Amount	Unit	Material	Labor	Equipment	Total	Total Incl O and P	Cast
Borings, initial field stake out & determination of elevations	1	Day		705	78.5	783.5	1150	\$1,150
Drawings showing boring details	1	Day		310		310	390	\$390
Report and recommendations from P.E.	1	Day		720		720	900	\$900
Mobilization and demobilization	1	Day		209	246	455	590	\$590
Borings in earth, with samples, 2-1/2" diameter	567	L.F.	22	15.05	17.7	54.75	66.5	\$37,706

Analysis 1 Community Ri

Boring Cost Analysis

Total: \$40,736

Advantages vs. Disadvantages

Advantages

- Accurate, Proven, Consistent
- Reliable in identifying soil type
- Reliable in identifying ground water

Disadvantage

- Expensive
- Identifies material and water through destruction (turf example)

Analysis 1 An	alysis 2 Analysis	s 3 Analy
$\mathbf{n}_{1} = \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{2} \mathbf{n}_{1} \mathbf{n}_{2} \mathbf{n}_{2}$	J	
nk Structural Breadth Buildin	ng Sequence Building End	closure Architectu

ysis 3 Analysis 4 ral Breadth **Geotech Investigation**

Pegula Geotechnical Investigation

Ground Penetrating Radar

Project Introduction

Analysis 1 Community Rink

GPR Cost Analysis

THG

\$1,000 - \$2,000

Advantages

- Fast and instant
- Inexpensive
- Environmentally friendly
- Noninvasive
- Can detect utility lines
- Can be used inside (reinforcement in slabs)

Disadvantage

- NOT efficient and accurate
- Does NOT work well through clay
- Does NOT reach great depths
- Does NOT detect a water table

Analysis 2 Analysis 1 Structural Breadth Building Sequence

Analysis 3 Building Enclosure

Analysis 4 Analysis 3 Architectural Breadth Geotech Investigation

Pegula Geotechnical Investigation

Analysis 4 Conclusion

Project Introduction

Analysis 1 Community Rink

Analysis 1 Analysis 2 Analysis 3 Analysis 3 Analysis 4 Structural Breadth Building Sequence Building Enclosure Architectural Breadth **Geotech Investigation**

Recommendations

Analysis 1: Community Rink

Benefit to Owner: NO Benefit to Architect: NO Benefit to CM: YES

Analysis 2: Project Sequence

Benefit to Owner: YES Benefit to Architect: --Benefit to CM: YES

Recommendations

Project Introduction

Analysis 1 **Community Rink**

Recommendations

Analysis 3: Building Enclosure

Benefit to Owner: NO Benefit to Architect: --Benefit to CM: YES

Analysis 4: Geotechnical Investigation

	<u>Analysis 1</u>	And	alysis 2
3	Benefit to CM:	YES	NO
0	Benefit to Owner: Benefit to Architect:	YES/NO	YES/NO
		<u>Boring</u>	<u>GPR</u>

Structural Breadth

Building Sequence

Analysis 3 **Building Enclosure**

Analysis 4 Architectural Breadth Geotech Investigation

Academic Acknowledgements

The Architectural Engineering Faculty

Raymond Sowers (Thesis Advisor)

Kevin Parfitt (Structural Advisor)

Robert Holland (Architectural Advisor)

Acknowledgements

Project Introduction

Analysis 1 Analysis 2 Analysis 1 Analysis 3 Analysis 3 Analysis 4 Community Rink Structural Breadth **Building Enclosure** Building Sequence Architectural Breadth Geotech Investigation

Industry Acknowledgements

Steve Laurila (Sr. PM), Jason Brown (Sr. Supt), Heidi Brown (PM), and Mortenson's Project Team

Marv Bevan (PM), Mark Bodenschatz (Assoc. AD for Facilities & Operations), and Penn State Project Team

Jeffrey Angstadt (VP of Operations) of Foreman Program and **Construction Managers**

PACE Industry Members

Family & Friends

Special Thanks

Project Introduction

Analysis 1 Community Rink

Questions?

Analysis 1 Structural Breadth

Analysis 2 Building Sequence

Analysis 3 Building Enclosure

Analysis 3

Analysis 4 Geotech Investigation Architectural Breadth

Project Introduction

Analysis 1 **Community Rink**

Analysis 1 Analysis 2 Analysis 3 Analysis 3 Analysis 4 Structural Breadth **Building Sequence** Building Enclosure Architectural Breadth Geotech Investigation

Conductivity values are found in lecture notes 6 of AE 542 (pg 58-61)				$\Delta T_i = \frac{R_i}{\sum R_i} (T_{int} - T_{ext})$		Permeability values are found in Straube and Brunett, 2005		$\Delta P_w = \frac{R_{vi}}{\sum R_{vi}} (P_{int} - P_{ext})$						
	k=Ct	Given	C=k/t	R=5.678R _{SI}	R _{SI} =1/C	— <i>i</i>		Material Property	M=µ∕t	R _v =1/M				RH=P _w /P _{ws} *100
Lavor matorial	Conductivity (k)	Thicknoss (t)	Conductance (C)	Posistanco (P)	Posistanco (P.)	Atomn (At)	tomp (t)	Dormophility (u)	Vapor	Vapor	∆Vapor	Vapor Pressure	Saturated Vapor	Relative
		mickness (t)	conductance (c)	Resistance (R)	Resistance (N _{SI})	Διεπρ (Δι)	temp (t)	Permeability (μ)	Permeance (M)	Resistance (R _v)	Pressure (ΔP_w)	(P _w)	Pressure (Pw,sat)	Humidity (RH)
Units	[W/m*K]	[m]	[W/m ² *K]		[m2*K/W]	[°C]	[°C]	[ng/Pa*s*m]	[ng/Pa*s*m ²]	[Pa*s*m ² /ng]	[Pa]	[Pa]	[Pa]	(%)
Interior Temp							23.89					1179.84	2949.60	40.00
Interior film	N/A	N/A	8.30	0.68	0.12	-0.47		N/A	15000.00	0.000067	-3.65			
							24.36					1183.49	3033.45	39.01
Drywall	0.16	0.01	12.31	0.46	0.08	-0.32		25.00	1923.08	0.000520	-28.49			
							24.67					1211.98	3091.17	39.21
Air Space	N/A	0.03	N/A	0.97	0.17	-0.66		175.00	7000.00	0.000143	-7.83			
							25.33					1219.81	3215.02	37.94
Concrete	1.80	0.08	24.00	0.24	0.04	-0.16		5.00	66.67	0.015000	-821.85			
							25.49					2041.66	3246.03	62.90
Insulation XPS	0.03	0.08	0.38	15.14	2.67	-10.34		2.00	25.00	0.040000	-2191.60			
							35.83					4233.26	5858.78	72.25
Concrete	1.80	0.08	24.00	0.24	0.04	-0.16		5.00	66.67	0.015000	-821.85			
							36.00					5055.11	5910.97	85.52
Exterior film	N/A	N/A	34.00	0.17	0.03	-0.11		N/A	75000.00	0.000013	-0.73			
Exterior Temp							36.11					5055.84	5948.05	85.00
R _{si} Total			3.15				R _v Total	0.07						
	R Total		17.89						ΔP_w Total	-3876.00				
	U=1/R Overall co-eff. Of heat (U)				0.32									

Analysis 3

Project Introduction

Analysis 1 Community Rin Summer

Interior	
T=23.89°C=301K	RH=
$P_{WS} = 1000 * e$	[52.58– <u>6790.5</u> –
P _{ws} =	2949.600858
$P_W = RH$	$*P_{WS}$
P _w =	1179.840343

terior	
36.11°C=258K	RH=
$P_{WS} = 1000 *$	$*e^{[52.58-\frac{6790.5}{T}-5.5]}$
P _{ws} =	5948.045099
$P_W = F$	$RH * P_{WS}$
P _w =	5055.838334

Ext T=

Page 157 (160 PDF)

	Analysis 1	Analysis 2	<u>Analysis 3</u>	Analy
nk	Structural Breadth	Building Sequence	<u>Building Enclosure</u>	<u>Architectur</u>

lysis 3Analysis 4aral BreadthGeotech Investigation

 $5.028 \ln(T)$]

85 percent

 $-5.028 \ln(T)$]

40 percent